- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Esumi, Ryo (1)
-
Imai, Hiroshi (1)
-
Ito-Masui, Asami (1)
-
Kawamoto, Eiji (1)
-
Motomura, Eishi (1)
-
Sakamoto, Ryota (1)
-
Sakano, Shoko (1)
-
Sano, Akane (1)
-
Shimaoka, Motomu (1)
-
Tanii, Hisashi (1)
-
Yu, Han (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Background Shift work sleep disorders (SWSDs) are associated with the high turnover rates of nurses, and are considered a major medical safety issue. However, initial management can be hampered by insufficient awareness. In recent years, it has become possible to visualize, collect, and analyze the work-life balance of health care workers with irregular sleeping and working habits using wearable sensors that can continuously monitor biometric data under real-life settings. In addition, internet-based cognitive behavioral therapy for psychiatric disorders has been shown to be effective. Application of wearable sensors and machine learning may potentially enhance the beneficial effects of internet-based cognitive behavioral therapy. Objective In this study, we aim to develop and evaluate the effect of a new internet-based cognitive behavioral therapy for SWSD (iCBTS). This system includes current methods such as medical sleep advice, as well as machine learning well-being prediction to improve the sleep durations of shift workers and prevent declines in their well-being. Methods This study consists of two phases: (1) preliminary data collection and machine learning for well-being prediction; (2) intervention and evaluation of iCBTS for SWSD. Shift workers in the intensive care unit at Mie University Hospital will wear a wearable sensor that collects biometric data and answer daily questionnaires regarding their well-being. They will subsequently be provided with an iCBTS app for 4 weeks. Sleep and well-being measurements between baseline and the intervention period will be compared. Results Recruitment for phase 1 ended in October 2019. Recruitment for phase 2 has started in October 2020. Preliminary results are expected to be available by summer 2021. Conclusions iCBTS empowered with well-being prediction is expected to improve the sleep durations of shift workers, thereby enhancing their overall well-being. Findings of this study will reveal the potential of this system for improving sleep disorders among shift workers. Trial Registration UMIN Clinical Trials Registry UMIN000036122 (phase 1), UMIN000040547 (phase 2); https://tinyurl.com/dkfmmmje, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046284 International Registered Report Identifier (IRRID) DERR1-10.2196/24799more » « less
An official website of the United States government
